Analysis of the Crack Driving Mechanism in Coarse-Grained RR1000 subjected to Thermo-Mechanical Fatigue

V. Norman¹, S. Stekovic¹, M. Whittaker², J. Jones², J. Rouse³, S. Williams⁴, B. Grant⁴

¹ Division of Engineering Materials, Linköping University, Sweden

² College of Engineering, Swansea University, Swansea, United Kingdom

³ Faculty of Engineering, Nottingham University, Nottingham, United Kingdom

⁴ Rolls-Royce plc., Derby, United Kingdom

EUROMAT 2019, 1-5 September, Stockholm Sweden

Objectives

Clarify the mechanisms of thermo-mechanical fatigue (TMF) crack growth

Outline

- Background and motivation
- Methods and results
 - -Crack closure effects
 - -Stress-strain state at crack tip
 - Environmental effects

DevTMF – an EU project

• Reducing aero engine emissions

Development of light-weight and fatigue-resistant materials

Material and load conditions

- Coarse-grained RR1000 for turbine rotors
- Thermo-mechanical load conditions

Methods and results

Thermo-mechanical fatigue crack propagation tests

- 70s triangular cycle
- 400-750°C
- 210-250MPa, R=0
- In-phase (IP) and out-of-phase (OP)
- Variations in the pre-crack procedure

Crack closure effects

Digital image correlation (DIC)

Crack-tip-opening displacement (CTOD)

Stress-strain state at crack tip

Finite element model

- Abaqus CAE 6.12
- Elastic-ideally plastic material model
- Uniform temperature
- Planar crack
- Brick elements with reduced integration
- $10\mu m$ element size at crack tip

This project has received funding from the *European Union's Horizon 2020 research and innovation* programme and Joint Undertaking Clean Sky 2 under grant agreement No 686600.

18

Environmental effects

Out-of-phase In-phase

5µm

This project has received funding from the *European Union's Horizon 2020 research and innovation programme* and Joint Undertaking Clean Sky 2 under grant agreement No 686600.

5µm

Out-of-phase

- Crack morphology indicates influence of oxygen
- However, grain boundary sliding occurs despite absence of oxygen at high temperatures in Ni-base superalloys [1-4]

[1] Mat. Sc. Eng. A (2009) 510-511 301-306
[2] Exp. Mech. (2012) 52:4 405-416
[3] Mat. Sc. Eng. A (2014) 605 127-136
[4] Exp. Mech. (2015) 55:1 53-63

Concluding remarks

Conclusions

- Growth rate is governed by the **mechanical conditions at the crack tip**, rather than environmental effects.
- IP growth rate is higher than OP due to the temperature dependence of the yield strength

