

ASSESSMENT OF OPTICAL BASED CONTROL METHODS FOR THERMO-MECHANICAL FATIGUE

J.P. Jones*, S. P. Brookes⁺, M. T. Whittaker*, R. J. Lancaster*, A. Dyer*, S.J. Williams°

* Institute of Structural Materials, Swansea University Bay Campus, SA1 8EN
+ Rolls-Royce, Mechanical Test Operations Centre, GmbH, Germany
° Rolls-Royce plc, Derby, DE24 8BJ

3-5 July 2017 – Fatigue 2017, Downing College, Cambridge, UK

Prifysgol Abertawe Swansea University

Industrial Motivation

- Increased turbine entry temperatures
- Thinner disc rims and advanced cooling systems leading to larger thermal gradients
- Complex loading regimes within the gas turbine leading to diverse phasing between temperature and strain

- Extrapolation of isothermal fatigue (IF) results to incorporate these effects show limited success
- Generation of TMF data is required to allow the development of lifing methodologies under <u>TMF</u> loading

Thermo-Mechanical Fatigue (TMF)

Diverse mechanisms are involved, Primarily . . .

Fatigue Creep Oxidation

- TMF loading can be more damaging than isothermal fatigue at an equivalent T_{max}
- Complex interaction within diverse phase angles between peak temperature and strain range
- Resulting in strain R ratios varying between 0 and -∞ depending on the phase angle, φ.

Typical TMF Hysteresis Behaviour

- Initial material behaviour may change significantly during the test.
- Understanding the stress/strain evolution throughout the test is often critical in order to be able to predict life.
- Cycle may evolve to very different stress conditions due to the interaction of plasticity and creep which often makes TMF tests differ significantly from isothermal fatigue.
- However without <u>accurate temperature control</u>, reliable test data for component lifing cannot be achieved.

Thermocouple Shoulder Control

- ISTITUTE OF STRUCTURAL MATERIAL
- Unfavourable to weld on the specimen gauge length Nucleation of cracks
- Contact temperature measurement can be achieved at the specimen shoulder.
- Complex setup and often temperatures at either shoulder are not stable with loops overlapping and drifting, unacceptable for temperature control purposes.

Pyrometer Control

- Non-invasive temperature control can be acheived using pyrometry
- High temperature pre-exposure to produce a constant surface emissivity, ε.

Control Pyrometer

3-5 July 2017 – Fatigue 2017, Downing College, Cambridge, UK

- **ASTM E2368-10**: Standard Practice for Strain Controlled Thermo-mechanical Fatigue Testing (*Released in 2004, updated in 2010*)
- **ISO 12111:2011**: Metallic materials Fatigue Testing Strain Controlled Thermomechanical Fatigue Testing Method (*Released 2011*)

10 mm

Pyrometer Control

High temperature pre-exposure can reduce Fatigue life

Encinas-Oropesa, A., Drew, G. L., Hardy, M. C., Leggett, A. J., Nicholls, J. R., and Simms N. J., Proceedings of the Eleventh TMS International Symposium, Superalloys, pp. 609-618, 2008

Thermal Profiling still achieved using thermocouples

3-5 July 2017 – Fatigue 2017, Downing College, Cambridge, UK

TMF Standards:

- **ASTM E2368-10**: Standard Practice for Strain Controlled Thermo-mechanical Fatigue Testing (*Released in 2004, updated in 2010*)
- **ISO 12111:2011**: Metallic materials Fatigue Testing Strain Controlled Thermomechanical Fatigue Testing Method (*Released 2011*)

Introduction - Thermography

- Technique that can deliver....
 - Accurate Temperature control
 - Incorporates Thermal Profiling
 - Not influenced by Surface emissivity
 - Completely Non-Invasive
 - Metallic and non-metallic materials
 - Robust and repeatable
 - Infra-red, Thermography?

Previous Work – Rolls-Royce plc, MTOC, Germany

Induction Heating

HE23 Thermal Paint

Radiant Lamp Furnace Heating

Surface Emissivity Stability

Previous Work – Radiation Reflections

Jones, J.P., et al., Non-invasive temperature measurement and control techniques under thermomechanical fatigue loading. Materials Science and Technology **2014**. 30(15): p. 1862-1876

Jones, J.P., et al. Assessment of Infrared Thermography for Cyclic High-Temperature Measurement and Control. in 4th Evaluation of Existing and New Sensor Technologies for Fatigue, Fracture and Mechanical Testing. **2015**. Toronto: ASTM International.

Previous Work – HE23 Stability

Brandt, R., C. Bird, and G. Neuer, Emissivity reference paints for high

temperature applications. Meas. (IMEKO), 2008. 41(7): p. 731-736

3-5 July 2017 – Fatigue 2017, Downing College, Cambridge, UK

90

80

70

60

50

40

30

20

10

0

-10

-20

-30

Temperature Deviation from Thermocuple Control (°C)

Previous Work – Thermography vs Thermocouples

Thermography View

- IR Thermography Monitor Sp1 (Post test analysis)
- ----IR Thermography Control Target Temperature ± 2°C

-Heating Output

- Jones, J.P., et al., Non-invasive temperature measurement and control techniques under thermomechanical fatigue loading. Materials Science and Technology 2014. 30(15): p. 1862-1876
- Jones, J.P., et al. Assessment of Infrared Thermography for Cyclic High-Temperature Measurement and Control. in 4th Evaluation of Existing and New Sensor Technologies for Fatigue, Fracture and Mechanical Testing. 2015. Toronto: ASTM International.

Previous Work – Thermography vs Thermocouples

 Jones, J.P., et al., Non-invasive temperature measurement and control techniques under thermomechanical fatigue loading. Materials Science and Technology 2014. 30(15): p. 1862-1876

Jones, J.P., et al. Assessment of Infrared Thermography for Cyclic High-Temperature Measurement and Control. in 4th Evaluation of Existing and New Sensor Technologies for Fatigue, Fracture and Mechanical Testing. **2015**. Toronto: ASTM International.

Previous Work – Thermography vs Thermocouples

 Jones, J.P., et al., Non-invasive temperature measurement and control techniques under thermomechanical fatigue loading. Materials Science and Technology 2014. 30(15): p. 1862-1876

Jones, J.P., et al. Assessment of Infrared Thermography for Cyclic High-Temperature Measurement and Control. in 4th Evaluation of Existing and New Sensor Technologies for Fatigue, Fracture and Mechanical Testing. **2015**. Toronto: ASTM International.

Previous Work – Thermocouple Shadowing

Cambridge, UK

Cooling Direction

Cooling Direction

Max

Min

Max

Min

Max

Min

Max

Min

Average

Average

Average

Average

04.4	°C	C		
90.9				
42.5		F		1
53.1		-	-	
06.6				
40.1			-	
22.0		Ľ	2 Sp1	
75.7			UH	
08.6			iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	
19.8		1	51 3p3	
99.4		-		
11.9				
97.3		-		
30.0			-	-
90.1		C.	22.7.2.2.17.1	

Bespoke TMF Setup – Non Metallic Materials

Bespoke TMF Setup – Non Metallic Materials

Control Method Comparison

Small Area Control (2 x 25mm)

Large Area Control (3 x 30mm)

Diverse Surface Conditions

Temperature Measurement Comparisons

Isothermal Accuracy, IR vs TC

Cambridge, UK

Dynamic Accuracy, IR vs TC_a

Dynamic Accuracy, IR vs TC_a

Dynamic Temperature Stability, Max/Min Cycle Peaks

Thermocouple Complications

Thermocouples

No Thermocouples

Evolving Surface Complications

Thermocouples

No Thermocouples

Non Metallic High-Temperature Control

Specimen Side View

Specimen Face View

Ø 574.1°C

eference h

Crack Length Measurements

TMF Crack Growth Setup

Thermography View

Keyence Microscope Image

Conclusions: Advantages / Disadvantages

Measurement	Thermocouple	Pyrometer	Thermography	
Mode	Invasive	Non Invasive	Non Invasive	
Area	≈ 2mm ²	≈ 2 mm ²	Entire Gauge Section	
Dynamic Accuracy	Externally Influenced	Good	Good	
Set up Time	Slow	Fast	Fast	
Profiling	Thermocouple Based	Thermocouple Based	Thermography Based	
Repeatability	Externally Influenced	Good	Good	
Emissivity Influenced	No	Yes	Yes	
Post Test Analysis	No	No	Yes	
Shadowing Effects	Yes	No	No	
Cold Spot Identification	No	No	Yes	
In-Situ Adjustments	No	No	Yes	
Initial Cost	Low	Ok	High	
Calibration Cost	High	Low	Low	

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme and Joint Undertaking Clean Sky 2 under grant agreement No 686600.

The provision of materials and technical support from Rolls-Royce plc is gratefully acknowledged. A special mention must be paid to Turan Dirlik, Steve Brookes, Veronica Gray and the ISM/SMaRT staff and Jennie Palmer.

Email contact: jonathan.p.jones@swansea.ac.uk

Prifysgol Abertawe Swansea University

Dirlik Controls Software for Materials and Component Testing