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Industrial Motivation

= |ncreased turbine entry temperatures

= Thinner disc rims and advanced cooling
systems leading to larger thermal
gradients

= Complex loading regimes within the gas
turbine leading to diverse phasing
between temperature and strain

g

Stress

= Extrapolation of isothermal fatigue (IF)
VT results to incorporate these effects
show limited success

= Generation of TMF data is required to
allow the development of lifing
methodologies under TMF loading
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Thermo-Mechanical Fatigue (TMF) SEU

Diverse mechanisms are involved, Primarily . . .

Fatigue  Creep Oxidation

= TMF loading can be more damaging than isothermal fatigue at an equivalent T__,

= Complex interaction within diverse phase angles between peak temperature and
strain range

= Resulting in strain R ratios varying between 0 and -e= depending on the phase
angle, ¢.
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Typical TMF Hysteresis Behaviour =ElU

Initial material behaviour may change significantly during the test.

Understanding the stress/strain evolution throughout the test is often critical in order to be
able to predict life.

Cycle may evolve to very different stress conditions due to the interaction of plasticity and
creep which often makes TMF tests differ significantly from isothermal fatigue.

However without accurate temperature control, reliable test data for component lifing

cannot be achieved.
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Thermocouple Shoulder Control  =ElU

= Unfavourable to weld on the specimen gauge length — Nucleation of cracks

= Contact temperature measurement can be achieved at the specimen shoulder.

= Complex setup and often temperatures at either shoulder are not stable with loops
overlapping and drifting, unacceptable for temperature control purposes.
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TMF Standards:

=  ASTM E2368-10: Standard Practice for Strain Controlled Thermo-mechanical Fatigue
Testing (Released in 2004, updated in 2010)
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Pyrometer Control

= Non-invasive temperature control can be acheived
using pyrometry

= High temperature pre-exposure to produce a constant
surface emissivity, €.
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Monitoring Pyro

TMF Standards:

=  ASTM E2368-10: Standard Practice for Strain Controlled Thermo-mechanical Fatigue
Testing (Released in 2004, updated in 2010)
o = 1SO 12111:2011: Metallic materials — Fatigue Testing — Strain Controlled Thermo- <,
Cambridge, UK mechanical Fatigue Testing Method (Released 2011)




Pyrometer Control wliEll

= High temperature pre-exposure can reduce Fatigue life

Encinas-Oropesa, A., Drew, G. L., Hardy, M. C., Leggett, A. J., Nicholls, J. R., and

Simms N. J., Proceedings of the Eleventh TMS International Symposium,
Superalloys, pp. 609-618, 2008

= Thermal Profiling still achieved using thermocouples
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TMF Standards:

ASTM E2368-10: Standard Practice for Strain Controlled Thermo-mechanical Fatigue
Testing (Released in 2004, updated in 2010)

1ISO 12111:2011: Metallic materials — Fatigue Testing — Strain Controlled Thermo- w-\bl
mechanical Fatigue Testing Method (Released 2011)
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Introduction - Thermography wiEiy

= Technique that can deliver.... \ @ 574.1°C

e Accurate Temperature control

Incorporates Thermal Profiling
* Not influenced by Surface emissivity
 Completely Non-Invasive

e Metallic and non-metallic materials

* Robust and repeatable

= Infra-red, Thermography?
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Previous Work — Rolls-Royce plc, MTOC, Germany
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Previous Work — Radiation Reflections wdEy

-

Jones, J.P., et al., Non-invasive temperature measurement and control techniques under
thermomechanical fatigue loading. Materials Science and Technology 2014. 30(15): p. 1862-
1876

\ ; / / Jones, J.P., et al. Assessment of Infrared Thermography for Cyclic High-Temperature
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Previous Work — HE23 Stability wdEdh
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Previous Work — Thermography vs Thermocouples
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Previous Work — Thermography vs Thermocouples
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Previous Work — Thermography vs Thermocouples
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Previous Work — Thermocouple Shadowing SEN
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Bespoke TMF Setup — Non Metallic Materials

g hydraulic Wedge Grip

v | |
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Bespoke TMF Setup — Non Metallic Materials
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Control Method Comparison CEISM!

Single Point Control Small Area Control (2 x 25mm) Large Area Control (3 x 30mm)
1 2.801.0°C %] 800.7°C _ @.800.5°C

X\
in

;;i;;}m \\zU //

Cambridge, UK



Diverse Surface Conditions
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Temperature Measurement Comparisons 21 SM|
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Isothermal Accuracy, IR vs TC LIS

ao0 0

800°C Isothermal
810
—— IR_Area Control
------ IR_Center
. — — — — — — — — - —————————— ] = TC_Center

TC_Center Face TGP G

800

Pyrometer_Top Cen G

~~~~~~ IR_Bottom

575.0

Temperature (°C)

e TC_Bottom

— — 15°C

- ---310°C

0 10 20 30 40 50

Time (hours)

250.0

3-5 July
2017, Dowhing College,
Cambridge, UK




Dynamic Accuracy, IRvs TC
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Dynamic Accuracy, IR vs TC, B
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Dynamic Temperature Stability, Max/Min Cycle Peaks
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Thermocouple Complications HEN
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Evolving Surface Complications EE
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Non Metallic High-Temperature Control EE

Specimen Side View Specimen Face View
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Crack Length Measurements ~IEL.

TMF Crack Growth Setup

4

Thermography View
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Conclusions: Advantages / Disadvantages SEN

Pyrometer Thermography

Measurement Thermocouple

Mode
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Dynamic Accuracy
Set up Time
Profiling
Repeatability

Emissivity
Influenced

Post Test Analysis
Shadowing Effects

Cold Spot
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In-Situ Adjustments
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Calibration Cost
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