Crack initiation in notched coarsegrained RR1000 specimens subjected to in-phase thermo-mechanical fatigue

V. Norman¹, S. Stekovic¹, D. Leidermark², B. Engel³, J. Rouse³, C. Hyde³, B. Grant⁴

¹ Division of Engineering Materials, Linköping University, Sweden

² Division of Solid Mechanics, Linköping University, Sweden

³ Faculty of Engineering, Nottingham University, Nottingham, United Kingdom

⁴ Rolls-Royce plc., Derby, United Kingdom

4th workshop on TMF, 13-15 November 2019, Berlin Germany

Outline

- Background and motivation
- Methods
- Results
- Conclusions

DevTMF – an EU project

• Reducing aero engine emissions

Development of light-weight and fatigue-resistant materials

Material and load conditions

- Coarse-grained RR1000 for turbine rotors
- Thermo-mechanical load conditions

Outcomes

- Increased understanding of fatigue crack initiation under service load conditions
- Experimental support for lifetime assessment modelling

Methods

Thermo-mechanical fatigue test

- 70s triangular cycle
- 400-750°C
- 240MPa, R=-1
- In-phase (IP)

Single-edge notched (SEN) specimen

Strain field measurements

Digital image correlation (DIC)

Strain field measurements

- Nikon UBS29 QXC F camera mounted at a lateral viewpoint
- LED lamp to eliminate blackbody radiation
- Open source Matlab-based DIC code
- DIC reference image taken at start of test
- Strain field averaged over several cycles

Metallography

Secondary cracks in the notch

- Measurement of secondary crack deviation angle
- Electron backscatter diffraction (EBSD)

Finite element modelling

Finite element model

- Abaqus CAE 6.12
- Elastic-perfect plastic material model
- Material data from tensile tests
- Uniform temperature
- Specimen symmetry exploited
- Uniform displacement at grip ends
- Brick elements with reduced integration

Results

Vertical strain component at peak tensile load (240MPa)

Vertical strain component at peak compressive load (-240MPa)

- Significant ratchetting effect
 - Non-symmetric creep and hardening due to the IP cycle

Maximum principal strain and principal direction

Orientation of secondary cracks

Secondary crack path morphology

Primary crack path morphology

Out-of-phase

In-phase

- Generally, IP loading seems to induce intergranular growth
 - Both small and long cracks

Concluding remarks

Conclusions

- IP cycling results in ratchetting effect in the notch
- Cracks are initiated perpendicular to the modelled maximum principal strain direction
- Secondary cracks grow intergranularly, in agreement with the primary crack growth

