

BESPOKE SET UPS FOR THERMO-MECHANICAL FATIGUE TESTING

M. T. Whittaker, J. P. Jones, R. J. Lancaster, J. Palmer, A. Dyer, R. Smith Institute of Structural Materials, Bay Campus, Swansea University, SA1 8EN, United Kingdom.

This project has received funding from the European Union's Horizon 2020 research and innovation programme and Joint Undertaking Clean Sky 2 under grant agreement No 686600

Prifysgol Abertawe Swansea University

Introduction

Swansea University Bay Campus

DevTMF. This project has received funding from the *European Union's Horizon 2020 research and innovation programme* and Joint Undertaking Clean Sky 2 under grant agreement No 686600.

DevTMF Partners

Swansea University, Wales. *Testing and analysis*

Nottingham University, England.
Modelling and round robin testing
Linkoping University, Sweden.
Modelling and round robin testing
Rolls-Royce plc, UK.

Material and technical support

Introduction

- Swansea University Background in TMF
- Development of test facilities
- TMF total life testing
- Thermography
- TMFCG Test Development
- Crack tip heating investigations
- Lessons learned

Background in TMF

Strain Control - Induction

Non Metallic – Lamp Furnace

Fatigue Crack Propagation – Induction

Pyrometer

Thermography

Thermocouple

- SO 12111:2011. Strain-controlled TMF Testing, 2011.
- BAM. CoP Force-Controlled TMF Testing, 2015.

Industrial Motivation

- Increased turbine entry temperatures
- Thinner disc rims and advanced cooling systems leading to larger thermal gradients
- Complex loading regimes within the gas turbine leading to diverse phasing between temperature and strain
- Extrapolation of isothermal fatigue (IF) results to incorporate these effects show limited success
- Generation of TMF data is required to allow the development of lifing methodologies under <u>TMF</u> loading

Thermo-Mechanical Fatigue (TMF)

> Diverse mechanisms are involved, Primarily . . .

Fatigue Creep Oxidation

- > TMF loading can be more damaging than isothermal fatigue at an equivalent T_{max}
- Complex interaction within diverse phase angles between peak temperature and strain range

Overview

System	TMF Test Type	Heating Method	Temp Control	Max Temp	Max Load	Waveform	Heat/Cooling Max Rate
#1	- Strain Control - Stress Control	Induction	Pyrometer	1150°C	100kN	- Triangular - Trapezoidal - Complex	35°C/S ⁻¹
#2	- Crack Growth	Induction	Thermocouple	1150°C	100kN	- Triangular - Trapezoidal	15°C/S ⁻¹
#3	- Stress Control (Strain Monitoring)	Infra-Red Lamp (Vertical)	Non-Contact Thermocouple	850°C	100kN	- Saw Tooth	20°C/S ⁻¹
#4	- Stress Control - Strain Control - Crack Growth	Infra-Red Lamp (Horizontal)	- Thermography - Thermocouple	850°C	100kN	- Triangular - Trapezoidal - Complex	25°C/S ⁻¹

System #1 – 'Thor'

System	TMF Test Type	Heating Method	Temp Control	Max Temp	Max Load	Waveform	Heat/Cooling Max Rate
#1	- Strain Control - Stress Control	Induction	Pyrometer	1150° C	100kN	- Triangular - Trapezoidal - Complex	35°C/S ⁻¹

System #2 – 'Margaret'

System	TMF Test Type	Heating Method	Temp Control	Max Temp	Max Load	Waveform	Heat/Cooling Max Rate	
#2	- Crack Growth	Induction	Thermocouple	1150°C	100kN	- Triangular - Trapezoidal	15°C/S ⁻¹	Pretty et al, Advanced Materials Research Vols. 891-892 (2014) pp

Pretty et al, Materials 2017, 10(1), 34; doi:10.3390/ma10010034

System #3 – 'Hugh'

System	TMF Test Type	Heating Method	Temp Control	Max Temp	Max Load	Waveform	Heat/Cooling Max Rate
#3	- Stress Control (Strain Monitoring)	Infra-Red Lamp (Vertical)	Non-Contact Thermocouple	850°C	100kN	- Saw Tooth	20°C/S ⁻¹

0

— TC 1 — TC 2

TC 3 TC 4 TC 5 TC 6

120

System #4 – 'Walter'

System #5 – 'Megatron'

System #5 – 'Megatron'

System	TMF Tyj	Test pe	F N	Heating Method		g Temperature d Control	
#5 Stress Control Strain Control Crack Growth			Infra Lam (Hor	a-Red p rizontal)	Therm Therm	ography ocouple	1050°C
	Therma	I Gradie	nts				
Hori		Vertical					
5mm	15mm	12m	m	50mm			
~250°C	~450°C	~400	°C ~750°C			Tempe Area 1	eratures ×

Three Independently Controlled Temperature Zones Through Thermography

Max Heating /

Cooling Rate

25°C/S⁻¹

Forced Air Cooling

Localised/Focused Cooling

Basic Fan Cooling

Diffuse uniform cooling through air amplifiers

Effect of peak temperature

Jones et al. (2017). The influence of phase angle, strain range and peak cycle temperature on the TMF crack initiation behaviour and damage mechanisms of the nickel-based superalloy, RR1000. *IJF* doi: 10.1016/j.ijfatigue.2017.01.036

- > At 750°C OP data shows a significant decrease in TMF life.
 - Likely to be due to increased oxidation effects
 - TMF lives consistently shorter than isothermal fatigue lives.

TMFCG Test Development

Induction Coil Designs

Palmer, J et al (2019). Int. J. Fatigue 121, 208-218. doi:10.1016/j.ijfatigue.201 8.12.015

Crack Tip Heating Investigations

Waspaloy crack growth rate vs ΔK : furnace and induction

Pretty et al, Materials 2017, 10(1), 34; doi:10.3390/ma10010034

Ti6246 with crack plane at 500°C. Profile indicates no effect of crack tip heating.

ISO 12111:2011. Strain-controlled TMF Testing, 2011. +/-10°C

Palmer, J et al (2019). Int. J. Fatigue 121, 208-218. doi:10.1016/j.ijfatigue.2018.12.015

Effect of Lamp Furnace vs Induction Coil

Isothermal

Palmer, J et al (2019). Int. J. Fatigue 121, 208-218. doi:10.1016/j.ijfatigue.2018.12.015

- Ti-6246 corner crack specimens tested at the same isothermal conditions, using three different heating methods
- Crack growth rates are consistent across heating methods
- For out of phase tests no evidence seen of variability in crack growth rate based on method
- Similar results in IP tests but more variability in growth rates overall

- Crack propagation techniques are developing towards a Code of Practice to enable damage tolerant lifing approaches.
- Thermography control offers potential for highly accurate temperature control across a large volume of material.
- Crack propagation tests in an induction coil show no evidence of crack tip heating.
- Diffuse air flows show more homogeneous cooling and are therefore more appropriate.
- Quartz lamp furnaces should be carefully considered in relation to the thickness of specimens.

