

Thermomechanical fatigue crack initiation in disc alloys using a damage approach

<u>Daniel Leidermark</u>¹, Robert Eriksson¹, James Rouse², Christopher Hyde², Svjetlana Stekovic¹

¹Division of Solid Mechanics, Linköping University ²G2TRC, University of Nottingham

The University of Nottingham

DevTMF – Horizon 2020 – CleanSky 2

Development of Experimental Techniques and Predictive Tools to Characterise Thermo**M**echanical **F**atigue Behaviour and Damage Mechanisms

Gas turbine

SGT-800

MAY 31, 2018

3

Courtesy of Rolls-Royce and Siemens

Failure is not an option

DevTMF

TMF crack initiation experiments

- Polycrystalline Ni-base disc alloy: RR1000
- Smooth round specimens
- Engine relevant load cycle:
 - − "OP"-TMF: 300 − 675°C
 - Hold-time: 30s

10% load-drop

Specimen	Diameter [mm]	$\Delta \varepsilon_{mech}$ [%]	Normalised N_i
<i>S</i> 1	7.61	0.8512	0.695
<i>S</i> 2	7.60	0.8976	0.526
<i>S</i> 3	7.62	0.8521	1.000
S4	7.60	0.8984	0.593
<i>S</i> 5	7.61	0.8803	0.604

Experimental lives

- Obtained lives
- How to model this?
- Fatigue damage model:
 - Memory surface
 - Memory stress
 - Plastic strain energy
 - Endurance limit

Resulting model prediction

- Model fitted to four
- S1: Verification
 - Off by factor 1.37

Constitutive behaviour

$$f = \sigma_{eq}^{vM} \left[\hat{\sigma}_{ij} - B_{ij} \right] - r - \sigma_Y$$
$$\dot{B}_{ij}^k = c_k \left(a_k \dot{\varepsilon}_{ij}^{vp} - B_{ij}^k \dot{\lambda} \right), \ k = 1, 2$$
$$\dot{r}_1 = q_1 \dot{\lambda}$$
$$\dot{r}_2 = h \left(q_2 - r_2 \right) \dot{\lambda}$$
$$\dot{\varepsilon}_{ij}^{vp} = \begin{cases} 0 & , \ f \le 0 \\ \dot{\lambda} \frac{\partial f}{\partial \sigma_{ij}} & , \ f > 0 \end{cases}$$
$$\dot{\lambda} = \left(\frac{f}{\eta} \right)^m$$

Crack initiation

• Add-on to user-defined material model

Fatigue damage model adopted from *Jiang 2000*

Memory surface

- Analogous to yield surface in plasticity
- Expands with the stress state
- Constant amplitude loading $-> \beta = 0$: no contraction
- Initially $\sigma_{mem} = \sigma_{end}$

Fatigue endurance limit

FE-Simulation

- LS-DYNA implicit solver
- Quarter model
- Stable state:
 - 5% difference in fatigue damage
 - $-\omega_c = \Delta\omega_1 + \ldots + \Delta\omega_x + \Delta\omega_{stable}(N_i x)$
 - "Cycle jumping"

Extensometer gauge length

Results & Discussion

- Uncertainties material batches ullet
- Endurance limit coupled to load cycle •
- Misguiding due to S1 and S3 ullet
- Critical-plane?
- Cycle jumping procedure? •

log normalised experimental cycles to crack initiation

Function

			Experiment
Specimen	Normalised predicted N_i	Factor	Normalised N_i
<i>S</i> 1	0.9528	1.3707	0.695 — Verification
S2	0.5490	1.0440	0.526
<i>S</i> 3	0.9622	0.9622	1.000
S4	0.5459	0.9200	0.593
<i>S</i> 5	0.6610	1.0952	0.604

Conclusions

- The constitutive model gave satisfactory response. Difference due to material batches
- Predicts TMF crack initiation within a factor of 1.37 compared to experiments
- Fatigue damage model accounts for load-sequence effects and eliminates cycle-counting methods
- Reduce uncertainties by including more experiments, only four specimens for calibration and one to verify

Thank you!

This project has received funding from the *European Union's Horizon 2020 research and innovation programme* and Joint Undertaking Clean Sky 2 under grant agreement No 686600.

