

THERMO-MECHANICAL FATIGUE CRACK GROWTH IN ADVANCED AEROSPACE ALLOYS

M. T. Whittaker¹, J. P. Jones¹, R. J. Lancaster¹, S. Stekovic²,

S. Pattison³, S. Williams³.

¹ Institute of Structural Materials, Bay Campus, Swansea University, SA1 8EN, United Kingdom.
 ² Department of Management and Engineering (IEI), Linköping University, Linköping, SE-581 83, Sweden
 ³ Rolls-Royce plc, PO Box 31, Derby, DE24 8BJ

This project has received funding from the European Union's Horizon 2020 research and innovation programme and Joint Undertaking Clean Sky 2 under grant agreement No 686600

Prifysgol Abertawe Swansea University

Fatigue 2018, Poitiers, France May 30th

Swansea University Bay Campus

DevTMF. This project has received funding from the *European Union's Horizon 2020 research and innovation programme* and Joint Undertaking Clean Sky 2 under grant agreement No 686600.

DevTMF Partners

Swansea University, Wales. *Testing and analysis* Nottingham University, England. *Modelling and round robin testing* Linkoping University, Sweden. *Modelling and round robin testing* Rolls-Royce plc, UK. *Material and technical support*

- Swansea University Background in TMF
- TMF total life testing
- Predictive methods
- TMFCG Test Development
- Crack tip heating investigations
- TMFCG Test Results
- Previous Work with Thermography
- TMFCG with Thermography

Perform an experiment and it gives us evidence

Perform more experiments and gain more evidence

Connect the evidence and come up with a theory

But there can be competing theories

ROLLS

Gather more evidence

We can eliminate demonstrably incorrect theories

Theories with the least assumptions tend to be true

So we tend to focus on theories that have less assumptions

It may not be completely accurate but it's better than competing theories

Roll

Background in TMF

- ASTM E2368-10. Strain Controlled TMF Testing, 2010.
- ISO 12111:2011. Strain-controlled TMF Testing, 2011.
- BAM. CoP Force-Controlled TMF Testing, 2015.

ROLLS ROYCE

Forced Air Cooling

Localised/Focused Cooling

Basic Fan Cooling

Diffuse uniform cooling through air amplifiers

Industrial Motivation

- Increased turbine entry temperatures
- Thinner disc rims and advanced cooling systems leading to larger thermal gradients
- Complex loading regimes within the gas turbine leading to diverse phasing between temperature and strain

- Extrapolation of isothermal fatigue (IF) results to incorporate these effects show limited success
- Generation of TMF data is required to allow the development of lifing methodologies under <u>TMF</u> loading

Diverse mechanisms are involved, Primarily . . .

Fatigue Creep Oxidation

- TMF loading can be more damaging than isothermal fatigue at an equivalent T_{max}
- Complex interaction within diverse phase angles between peak temperature and strain range
- Resulting in strain R ratios varying between 0 and -∞ depending on the phase angle, φ.

Primary factors affecting TMF life

- R ratio
- Peak strain/stress
- Strain/stress range
- Strain rate
- Environment

- TMAX
- TMIN
- ΔT
- Phase angle
- Loading direction

General TMF Life Trends

General TMF Life Trends

- TMF life ≤ LCF life
- At Intermediate Δε
 - IP life \leq OP life
 - IP, INTER-granular cracking

General TMF Life Trends

- TMF life \leq LCF life
- At Intermediate Δε
 - IP life \leq OP life
 - IP, INTER-granular cracking

General TMF Life Trends

- TMF life ≤ LCF life
- At Intermediate Δε
 - IP life \leq OP life
 - IP, INTER-granular cracking
- At Low Δε
 - OP life \leq IP life
 - OP, TRANS-granular cracking

General TMF Life Trends

- TMF life ≤ LCF life
- At Intermediate Δε
 - IP life \leq OP life
 - IP, INTER-granular cracking
- At Low Δε
 - OP life \leq IP life
 - OP, TRANS-granular cracking

General TMF Life Trends

At Low Δε

R

• CD90 life ≤ IP & OP

General TMF Life Trends

At Low Δε

R

• CD90 life ≤ IP & OP

General TMF Life Trends

At Low Δε

R

• CD90 life ≤ IP & OP

General TMF Life Trends

General TMF Life Trends

General TMF Life Trends

- CW45° loading follows a similar trend to IP loading
- Counter Clockwise -135°
 loading reduces fatigue life, similar slope to OP loading

ROLLS ROYCE

Effect of peak temperature

At 750C OOP data shows a significant decrease in TMF life.

Likely to be due to increased oxidation effects

Oxidation damage

Lifing approaches (Basquin)

Stress based approaches such as Basquin don't take account of crack propagation

Rolls

Crack propagation

For fatigue lives that are less than 5000 cycles it is not appropriate to consider only crack initiation as the dominant factor in fatigue life.

TMFCG Test Development

Fatigue 2018, Poitiers, France May 30th

Induction Coil Designs

Rolls

320

Pre-Crack Procedure

Thermo-Mechanical Fatigue Crack Growth Pre-Cracking

Stage	Temperature (°C)	Waveform	Frequency (Hz)	Stress (MPa)	Duration (µv)
1	Ambient	Sine	5	600	25
2	Ambient	Sine	5	500	50
3	Ambient	Sine	1	500	75

Crack Tip Heating Investigations

822.7 Biggin and the second se

Waspaloy crack length vs. number of cycles: furnace and induction coil comparisons at 650°C, 450MPa and R=0.1.

Ti6246 with crack plane at 500°C. Profile indicates no effect of crack tip heating.

FG RR1000 TMF CP

Strong dependence on phase angle

Rates tend to approximate temperature at which peak stress occurs

- Slightly accelerated rates in TMF tests at low temperature
 - Influence of oxidation

TMFCG Test Results

ROLLS

IR Crack Growth Measurements

Non-Invasive TMFCG

A completely Non-Invasive TMFCG test method

Advantages * Avoid complications with thermocouple control

- Crack initiations at welds.
- Thermocouple shadowing and or over/undershooting

J. P. Jones, S. P. Brookes, M. T. Whittaker, R. J. Lancaster and B. Ward. "Non-Invasive Temperature Measurement and Control Techniques under Thermo-Mechanical Fatigue Loading". Materials Science and Technology Journal. 2014.

J. P. Jones, S. P. Brookes, M. T. Whittaker, R. J. Lancaster "Alternative Non-invasive temperature control and monitoring techniques". ASTM, Fourth Symposium on the Evaluation of Existing and New Sensor Technologies for Fatigue, Fracture and Mechanical Testing, 2014.

* Remove complications with PD probe attachments and coil interferences.

* Enables aggressive environmental testing to be carried out

Fatigue 2018, Poitiers, France May 30th

Conclusions

- Engine operating temperatures have increased to the point where Thermo-Mechanical Fatigue (TMF) is now a critical consideration.
- TMF lives are generally reduced from isothermal fatigue at Tmax irrespective of phase angle.
- Lifing methods based on comparisons with isothermal data at Tpeak stress also fail to offer appropriate predictions.
- Testing methodology for TMF is critical and many traditional techniques should be re-examined.
- Crack propagation techniques are developing towards to Code of Practice to enable damage tolerant lifing approaches.

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme and Joint Undertaking Clean Sky 2 under grant agreement No 686600.

The provision of materials and technical support from Rolls-Royce plc is gratefully acknowledged. A special mention must be paid to Turan Dirlik, Steve Brookes, Veronica Gray and the ISM/SMaRT staff and Jennie Palmer.

Email contact: jonathan.p.jones@swansea.ac.uk

Prifysgol Abertawe Swansea University

Dirlik Controls Software for Materials and Component Testing